

ECONADAPT

The Economics of Adaptation

Economics of project appraisal

Rationale and objectives

ECONADAPT The Economics of Adaptation

Consideration of adaptation in infrastructure project appraisal is increasingly required (EUFIWACC; other banks globally; insurers...)

Gap: clear, simple and actionable guidelines, especially for infrastructure investments into adaptation

OBJECTIVE: Use two real-world cases

→ Generalize and summarize the lesson-learnt into guidelines for appraisals of investment into large Infrastructure and into adaptation

Prague (CZ) Bilbao (ES) The cascade of uncertainty Regional impacts

The envelope of uncertainty

ECONADAPT

The Economics of Adaptation

- Frequent floods
- 4% of EU Solidarity Fund (e.g., 130 M€ in 2002)

ECONADAPTThe Economics of Adaptation

Ex-post appraisal of investments in adaptation to flooding (1999-2014)

ECONADAPT

The Economics of Adaptation

Damage to immovables:

- buildings
- infrastructure

Loss of agricultural production

D_{i} , $i \in \mathbb{N}$	$= D_1 \cdots$	$+ D_{road(e)}$	+D
Ptotal(e)	– Pbuild(e)	road(e)	- crop(e)

Return period	5- year	20- year		
Estimated average damage (M€)	2.8	47	85	597
Actual historic damage (2002-13) (M€)	0.8	8	31	570

Risk as Expected Annual Damage (EAD):

$$EAD = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{RP_i} - \frac{1}{RP_{i+1}} \right) (D_i + D_{i+1})$$

Four approaches to discounting:

- Constant discount rate (0, 1, 2, 3 and 4%)
- Standard neoclassical Ramsey formula

$$r_{S} = \delta + \eta \cdot g_{t}$$

Extended Ramsey formula with stochastic growth $r_s = \delta + \eta \cdot \mu - \eta^2 \cdot \frac{\sigma^2}{2}$

$$r_{s} = \delta + \eta \cdot \mu - \eta^{2} \cdot \frac{\sigma^{2}}{2}$$

Discounting under Relative Intertemporal Risk Aversion

$$r_{s} = \delta + \eta \cdot \mu - \eta^{2} \cdot \frac{\sigma^{2}}{2} - RIRA \cdot |1 - \eta^{2}| \cdot \frac{\sigma^{2}}{2}$$

ECONADAPTThe Economics of Adaptation

ECONADAPT The Economics of Adaptation

Uncertainty treatment: Sensitivity study to attribute relevance of sources of uncertainty on the CBA results

Input parameter	Realizations	Source of uncertainty
Representative Concentration	3	Difference in the GHG forcing boundary conditions
Pathways		
Climate simulations from RCM	14	Assumptions behind the regional climate models
Depth-damage function	3	Variability in the damage rates
Approximation of EAD	2	Trapezoidal rule with different number of return periods
Variable costs	3	Range of values
Lump-sum costs	3	Range of values
Economic growth	10	Variability in the GDP growth projections, different SSPs
		and models
Discounting approach	4	Assumptions behind discounting

 $\Delta B = \Delta NPV \text{ generally } > 0 \quad (\approx Ms \in)$

Discounts of 4% and above entail $\Delta NPV < 0$

ECONADAPT

The Economics of Adaptation

Appraisal of investment in flood reduction – Real Option Analysis Measure: opening a canal \rightarrow turning Zorrotzaurre into peninsula

ECONADAPT

Funded by
the European Union

The Economics of Adaptation

Provision of climate change data (UEA -ECONADAPT) Stochastic meteorological modelling of climate data (URA)

Estimation of peak-flows (URA)

Estimation of the magnitude of extreme floods (URA)

New flood-risk areas in the Bilbao Estuary

New flood-risk areas in the Bilbao Estuary Present and future flood damage with and without adaptation

Expected annual damage

Real Option Analysis Economic decision on adaptation investment

ECONADAPTThe Economics of Adaptation

+ sea level anomalies considering future rise

Five categories of damage:

- 1. damages to residential property
- 2. relocation costs
- 3. impacts on cultural heritage
- 4. impacts on human health
- 5. disruption of transportation, increase in emergencies, and second -round effects

ECONADAPTThe Economics of Adaptation

Risk metrics used: Value at Risk; Expected Shortfall; Volatility

Uncertainty study

ECONADAPT

The Economics of Adaptation

Source of	How is it addressed?			Degree of uncertainty	
uncertainty	Prague Bilbao		Prague	Bilbao	
Future emissions	Use of three RCPs: RCP 2.6; RCP 4.5; RCP 8.5	Use of two RCPs: RCP 4.5; RCP 8.5	Medium	Medium	
Regional climate	Use of 14 climate simulations from several RCMs for precipitation and temperature	Use of 11 climate simulations from several RCMs for precipitation and temperature; for sea level rise a regionalization of IPCC mean global sea level change	High	High	
Hydrological modeling	Cut-off of the events with the highest return periods, to reduce uncertainty from the extrapolation of extreme values from limited observation series	Not addressed	Low		
Socio-economic developments	Application of SSP- and RCP-dependent discount rates for future values. Also, two different sources of GDP projections are used (OECD, IIASA)	Results are provided for a range of values of increase in damage, also reflecting socioeconomic development	High	High	
Damage calculation	Inclusion of uncertainties on exposure of assets and on the vulnerability curves for buildings: min, max and mean values are considered for these datasets	Inclusion of min and max values for the maximum possible damage to buildings	Medium/ High	Medium/ High	
Costs of adaptation	Inclusion of a range of values for the cost of maintenance and for "one-off" costs for protection operations	Results of the decision-making process are provided for a range of values of investment costs	Low	Medium	
Method of EAD calculation	Trapezoidal rule using 6 return periods vs. using full range of 141 return periods	Estimation of likelihood of occurrence of stochastic events of three return periods with Poisson process	Medium	Low	
Discounting approach	Employing several approaches: constant rate; Ramsey formula with scenario-dependent discount rate; expanded Ramsey formula with uncertain growth; expanded Ramsey formula with RIRA. Also, two different sources of GDP projections are used (OECD, IIASA)	Results are shown for a vast range of discounting values	Medium	Medium	
Discount rate	Two discount rates are used for the constant discounting approach	Results are shown for a vast range of discounting values	Highest	Medium	

The two case studies served to identify the key steps and challenges in the appraisal:

- 1. Generalize (from floods)
- 2. exploit the range of expertise in ECONADAPT consortium
- 3. distil guidelines for practitioners

As straightforward and free of technical jargon as possible

Total of 22 steps, divided in 6 areas:

- A. Context analysis
- B. Hazard assessment
- C. Impact assessment
- D. Adaptation
- E. Economic appraisal

- For each step:
- overview of problem
- state-of-the-art practices and plausible methodological choices
- account of what done in our case studies
- report on pros and cons of what done
- recommend what to do
- F. Decision-making with consideration of stakeholders

Summary tables

For each step:

- main strength of the approaches taken in the two case studies,
- remaining challenges
- resulting recommendations

Aim: provide a schematic map with minimal amount of information that the practitioner should keep in mind at any moment

Examples:

Step	Main strengths in our approach	Remaining challenges	Recommendations
B.2	In the Prague case we	For the Bilbao case we	Use datasets from multiple models,
Climate	used climate data	could only use the results	and sample the range of their
datasets	from a wide range of	of one climate model.	outcomes. When limited resources
	climate models, and	However, we justified this	imply that datasets from few
	thus adequately	choice by demonstrating	model can be used: carefully
	sampled the inter-	that this dataset is	select the model(s) and provide
	model uncertainty	representative of multiple	estimation of the uncertainty
		models' ensemble mean	around their outcomes

Examples:

Step	Main strengths in our approach	Remaining challenges	Recommendations
E.5	We explored a large variety of	Discounting	As this step is crucial to the
Discounting	approaches to discounting,	beyond certain	outcome of the economic
of future	and of values, in the Prague	thresholds makes	appraisal, rigorous
values	case, also considering their	adaptation	investigation (i.e., sensitivity
	compatibility with the climate	inefficient	analysis) of the effects of
	scenarios adopted. In the		different discounting
	Bilbao case, results were		approaches and rates should
	produced for any plausible		be carried out
	rate of discount		

Main recommendations

- The appraisal of infrastructure investments, and the evaluation and planning of adaptation is by its own nature a comprehensive and multidisciplinary exercise. The practitioner should count on (access to) a range of expertise to do the job
- it is possible to structure the appraisal after a set of steps that should be carefully considered and at least inspire the practice

Future research directions

Mismatch between time required for appraisal and time available?

- → Compare approaches, for the key steps:

 Test how minimal, light touch approaches perform vs full-blown quantification of impacts
- → Capacity building projects

Thank you paolo.scussolini@vu.nl